Human Interaction with Robots
Working in Complex and Hazardous Environments

Bill Hamel, Professor & Head
IEEE Fellow
RAS Vice President for Publication Activities

Mechanical, Aerospace, & Biomedical Engineering Department

University of Tennessee
Human Interaction with Robots Working in Complex and Hazardous Environments

- Preliminaries
 - Complex and Hazardous?
 - Robots?
 - Human Interaction?
 - Needs for Performance Improvements?
- Modern Telerobot?
 - System Concept & Architecture
 - Where should research foci be?
- Current Research…Telerobotics
 - Experimental System
 - Results
 - Future Directions
- Closing Remarks
Complex and Hazardous?

- Remote operations in hazardous and **uncertain** environments…**unstructured**
 - Nuclear, Space, Underwater, Medical Surgery…
- Remote work systems that involve:
 - Remote sensing
 - Manipulators
 - Mobility
 - **Use of tools**
- Human-in-the-loop operations/control
Robot?... Telerobotics

- Telerobots?
 - Telerobot = Teleoperator U Robot
 - tR = Robot U Teleoperator
 - Tr = Teleoperator U Robot
 - tR ≠ Tr
 - Manual control U Autonomous operations

- Human interaction
- Computer assisted teleoperation
- Selective autonomy
Human Interaction…

- **Teleaction**
 - Tasks
 - Tools

- **Telepresence**
 - Sensors
 - Manipulators
 - Mobile Transporter

- **Physical/Temporal/Hazards Barriers**
 - Human/Machine Interface
 - Signals
 - Power

- **Human/Machine Interface**
Decades of Refinements...
Needs...

- **Reality:**
 - Too expensive
 - Too slow
 - Too complicated

- **Improve remote work efficiency**
 - Best: direct/teleaction ≥ 10
 - Worst: direct/teleaction ~ 100’s

- **Open engineering**
 - Power supply and transmission; cable handling
 - 3D remote viewing and sensing
Telerobot Functional Architecture

- HMI Autonomous Operations
- HMI Teleoperations
- Interactive Task Planner
- In Situ Model Builder
- Cooperative Assists Planner
- Control
- Fault Detection & Recovery
- Mobility
- Task Space
- Sensors
- Manipulation
- Tooling

RTSA
TR Control

Computer assisted teleops

Colloquium on Robotics and Automation
Università degli Studi di Napoli Federico II
Napoli 18 December 2006
Critical Performance Issues

HUMAN-MACHINE COOPERATIVE TELEROBOTIC PROCESS

Select and configure assistance strategy

Execute manually with assistance

Manual teleoperation

Remote Operations Task Sequence

Seamless Transfer Essential

Subtask \(i\)

\(i+1\)

\(i+2\)

\(i+3\)

\(i+4\)

Build in situ 3D model

Plan subtask

Execute automatically

Verify results

Manual teleoperation

ROBOT TASK SCENE ANALYZER PROCESS

Colloquium on Robotics and Automation
Università degli Studi di Napoli Federico II
Napoli 18 December 2006
Telerobot Control Structure

Colloquium on Robotics and Automation
Università degli Studi di Napoli Federico II
Napoli 18 December 2006
Research Test Bed

Dual remote manipulators...
Human Interactive Task Space Modeling and Planning

Max use of a priori knowledge
Parallel Execution
Operator Control
Where, what, and how.
Acceptance of results.
Simplified GUI
5 pop-up window menus
Color overlays
± 10 mm in robot workspace
REMOTE OPERATIONS TASK SEQUENCE

SUBTASK_1: Manual
SUBTASK_2: Auto
SUBTASK_3: Auto
TELEROBOTIC SUBTASK SEQUENCE
SUBTASK_1:
RTSA BUILD IN SITU 3D Model
PLAN SUB-TASK
EXE-CUTE
VERIFY RESULTS

8-10 min 4 min 18 min

32 min versus 45-90 min Teleop

Colloquium on Robotics and Automation
Università degli Studi di Napoli Federico II
Napoli 18 December 2006
Recent activities…

- 7 dof “haptic” controller
 - Barrett Technologies WAM
- Large-scale multi-fingered end effector
 - Barrett Technologies Wraptor
- Reduced tool specializations
- Controller integration
 - Tooling: behavior-based grasping
- Test & evaluation
Continuing Research

Continuing Research

Abort Plan Sequence
Original Plan Sequence
Re-Plan Sequence

Fault state/step
"Drift" state/step
Fault state/step

Retrace/restart original
Start re-plan

Fault Detection & Recovery
Interactive Task Planner
In Situ Model Builder
Cooperative Assists Planner
Control
Fault Detection & Recovery

Operational Space Fault Detection

HMI Autonomous Operations
HMI Teleoperations

Computer assisted teleops

Manipulation
Tooling
Task Space

RTSA
TR Control

Tool-based Control

Intelligent/interactive State Management

Colloquium on Robotics and Automation
Universita` degli Studi di Napoli Federico II
Napoli 18 December 2006

16
Higher-fidelity telepresence and teleaction... needs, directions...

- Perception/Sensing
 - 3D viewing
 - 3D graphics augmentation
 - Natural kinesthetic/tactile feedback

- Intelligence/Control
 - Human relationships
 - Interactivity reduced through increasing autonomy
 - More cooperative
 - Humans move up in hierarchy
 - Machine learning
 - By observation – symbiosis

- Action/Manipulation
 - Multi-fingered end effectors

- Human Machine Interface
 - Algorithmic complexity
 - VR-based interfaces
Summary

- “True” Telerobots are being realized.
- There is hope for improving the effectiveness of remote operations in complex environments.
- Ongoing research will continue to drive this trend.
Thank you for your attention!